Journal of Emergencies, Trauma, and Shock
Home About us Editors Ahead of Print Current Issue Archives Search Instructions Subscribe Advertise Login 
Users online:1004   Print this pageEmail this pageSmall font sizeDefault font sizeIncrease font size   
Year : 2009  |  Volume : 2  |  Issue : 3  |  Page : 164-169

Comparison of two different types of heat and moisture exchangers in ventilated patients

Department of Anaesthesiology and Critical Care, JN Medical College, Aligarh Muslim University, Aligarh, India

Correspondence Address:
Syed Moied Ahmed
Department of Anaesthesiology and Critical Care, JN Medical College, Aligarh Muslim University, Aligarh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0974-2700.55327

Rights and Permissions

Study Objectives: To compare the efficacy of two different types of Heat and Moisture Exchangers (HME filters) in reducing transmission of infection from the patient to ventilator and vice versa and also its cost effectiveness. Design: Randomized, controlled, double blind, prospective study. Patients and Methods: 60 patients admitted to the ICU from May 1, 2007 to July 31, 2007 of either sex, age ranging between 20 and 60 years, requiring mechanical ventilation were screened for the study. Following intubation of the patients, the HME device was attached to the breathing circuit randomly by the chit-in-a box method. The patients were divided into two groups according to the HME filters attached. Results: Both the groups were comparable with respect to age and sex ratio. In Type A HME filters, 80% showed growth on the patient end within 24 h and in 27% filters, culture was positive both on the patient and the machine ends. The organisms detected were Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa and co-related with the endotracheal aspirate culture. After 48 h, 87% filters developed organisms on the patient end, whereas 64% filters were culture positive both on the patient and the machine end. In Type B HME filters, 70% showed growth on patient's end after 24 h. Organisms detected were S. aureus, E. coli, P. aeruginosa and Acinetobacter. Thirty percent of filters were culture negative on both the patient and machine ends. No growth was found on the machine end in any of the filters after 24 h. After 48 h, 73% of the filters had microbial growth on the patient end, whereas only 3% filters had growth (S. aureus) on the machine end only. Seven percent had growth on both the patient as well as the machine ends. The microorganisms detected on the HME filters co-related with the endotracheal aspirate cultures. Conclusion: HME filter Type B (study group) was significantly better in reducing contamination of ventilator from the patient as compared to Type A (control group), which was routinely used in our ICU. Type B filter was found to be effective for at least 48 h. This study can also be applied to patients coming to emergency department (ED) and requiring emergency surgery and postoperative ventilation; and trauma patients like flail chest, head injury etc. requiring ventilatory support to prevent them from acquiring ventilator-associated pneumonia (VAP).

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded161    
    Comments [Add]    
    Cited by others 1    

Recommend this journal